IIT-Main \& Advanced | NEET | BITS | AIIMS | JIPMER | CET | COMED-K

\#326, 3rd 'A' Cross, Opp. - People Tree Hospital, Sheshadripuram College Road, Yelahanka New Town, Bangalore-560064, KARNATAKA

K-CET EXAMINATION - 2024
 CHEMISTRY - A-1 with Key \& Solutions

1. For which one of the following mixtures is composition uniform throughout?
(A) Sand and water
(B) Grains and pulse with stone
(C) Mixture of oil and water
(D) Dilute aqueous solution of sugar

Ans. (D)
Sol. Sugar (s) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow$ Homogeneous sugar solution (aq)
2. The energy associated with first orbit of He^{+}is
(A) 0 J
(B) $-8.72 \times 10^{-18} \mathrm{~J}$
(C) $-4.58 \times 10^{-18} \mathrm{~J}$
(D) $-0.545 \times 10^{-18} \mathrm{~J}$

Ans. (B)
Sol. $E_{(1, H)}=-13.6 \mathrm{eV}$

$$
\begin{aligned}
& =-13.6 \times 1.602 \times 10^{-19} \mathrm{~J} \\
& =-21.787 \times 10^{-19} \mathrm{~J} \\
\mathrm{E}_{\left(1, \mathrm{H} \mathrm{H}^{+}\right)} & =\mathrm{E}_{(1, \mathrm{H})} \times \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left[-21.787 \times 10^{-19}\right] \times \frac{2^{2}}{(1)^{2}}\right) \\
& =-87.148 \times 10^{-19} \\
& =-8.72 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

3. A metalloid is
(A) Bi
(B) Sb
(C) P
(D) Se

Ans. (B)
Sol. Sb is metalloid with metal and non-metal nature.
4. A pair of isoelectronic species having bond order of one is
(A) $\mathrm{N}_{2}, \mathrm{CO}$
(B) $\mathrm{N}_{2}, \mathrm{NO}^{+}$
(C) $\mathrm{O}_{2}^{2-}, \mathrm{F}_{2}$
(D) $\mathrm{CO}, \mathrm{NO}^{+}$

Ans. (C)
Sol. $\mathrm{O}_{2}^{-2}, \mathrm{~F}_{2}$ having 18 electrons with bond order is one.
5. Identify the wrong relation for real gases:
(A) $\quad \mathrm{Z}=\frac{\mathrm{V}_{\text {ideal }}}{\mathrm{V}_{\text {real }}}$
(B) $\quad p_{\text {ideal }}=p_{\text {real }}+\frac{a n^{2}}{V^{2}}$
(C) $V_{\text {real }}=V_{\text {ideal }}-n b$
(D) $\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$

Ans. (A)
Sol. $Z=\frac{V_{\text {real }}}{V_{\text {ideal }}}$
6. From the diagram

$\Delta_{r} \mathrm{H}$ for reaction $\mathrm{C} \rightarrow \mathrm{A}$ is:
(A) +35 J
(B) -15 J
(C) -35 J
(D) +15 J

Ans. (C)
Sol. According to Hess Law
$\Delta \mathrm{H}_{(\mathrm{A} \rightarrow 2 \mathrm{~B})}+\Delta \mathrm{H}_{(2 \mathrm{~B} \rightarrow \mathrm{C})}$
$=10 j+25 j=+35 j$
$=\Delta H_{C \rightarrow A}=-35 j$
7. In the analysis of III group basic radicals of salts, the purpose of adding $\mathrm{NH}_{3} \mathrm{Cl}_{(\mathrm{s})}$ to $\mathrm{NH}_{4} \mathrm{OH}$ is:
(A) to increase the concentration of OH^{-}ions
(B) to precipitate the radicals of group IV and V
(C) to suppress the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$
(D) to introduce Cl^{-}ions

Ans. (C)
Sol. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$ with $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}$ shows common ion effect decreases the dissociation of $\mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}$
8. Solubility product of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at a given temperature in pure water is $4 \times 10^{-9}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$. Solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at the same temperature is
(A) $6.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(C) $2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $6.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

Ans. (A)
Sol. $K_{(\text {sp })}=S^{2}$
$\mathrm{CaC}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{Ca}^{+2}+\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$
$\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right] \quad$ (AB - type)
$4 \times 10^{-9}=S^{2}$
$S=\left(4 \times 10^{-9}\right)^{1 / 2}$
$=\left[40 \times 10^{-10}\right]^{1 / 2}$
$=6.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
9. In the reaction between moist SO_{2} and acidified permanganate solution:
(A) SO_{2} is oxidised to SO_{4}^{2-}
MnO_{4}^{-}is reduced to Mn^{2+}
(B) SO_{2} is reduced to S
MnO_{4}^{-}is oxidised to MnO_{4}
(C) SO_{2} is oxidised to SO_{3}^{2-}
MnO_{4}^{-}reduced to MnO_{2}
(D) SO_{2} is reduced to $\mathrm{H}_{2} \mathrm{~S}$
MnO_{4}^{-}is oxidised to MnO_{4}
Ans. (A)
Sol. $\mathrm{MnO}_{4}^{-2}+\mathrm{SO}_{2} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{+2}+\mathrm{SO}_{4}^{-2}$
10. Which one of the following properties is generally not applicable to ionic hydrides?
(A) Non - volatile
(B) Non - conducting in solid state
(C) Crystalline
(D) Volatile

Ans. (D)
Sol. Ionic hydride has large melting point and not volatile.
11. Which one of the following nitrate will decompose to give NO_{2} on heating?
(A) NaNO_{3}
(B) KNO_{3}
(C) RbNO_{3}
(D) LiNO_{3}

Ans. (D)
Sol. $\mathrm{LiNO}_{(\mathrm{s})} \xrightarrow{\Delta} \mathrm{Li}_{2} \underset{(\mathrm{~s})}{\mathrm{O}}+\mathrm{NO}_{2(\mathrm{~g})}$
12. Which of the following halides cannot be hydrolysed?
(A) CCl_{4}
(B) SiCl_{4}
(C) GeCl_{4}
(D) SnCl_{4}

Ans. (A)
Sol. In CCl_{4} compound the absence of vacant
d - orbitals in 'C' doesn't hydrolysed.
13. 0.48 g of an organic compound on compete combustion produced 0.22 g of CO_{2}. The percentage of C in the given organic compound is:
(A) 25
(B) 50
(C) 12.5
(D) 87.5

Ans. (C)
Sol. Sol. $\% \mathrm{C}=\frac{12}{44} \times \frac{\mathrm{W}_{\left(\mathrm{CO}_{2}\right)}}{\mathrm{W}_{\text {org.comp }}} \times 100$

$$
\begin{aligned}
& =\frac{12}{44} \times \frac{0.22}{0.48} \times 100 \\
& =12.5
\end{aligned}
$$

14. In the given sequence reactions, identify ' P ',' Q ', ' R ' and ' S ' respectively.

(A) Br_{2}, Alc. $\mathrm{KOH}, \mathrm{NaOH}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(B) HBr, Alc. $\mathrm{KOH}, \mathrm{CaC}_{2}, \mathrm{KMnO}_{4}$
(C) HBr, Alc. $\mathrm{KOH}, \mathrm{NaNH}_{2}$, Red hot iron tube
(D) Br_{2}, Alc. $\mathrm{KOH}, \mathrm{NaNH}_{2}$, Red hot iron tube

Ans. (D)
Sol.

15. The first chlorinated organic insecticide prepared is
(A) Gammexane
(B) Chloroform
(C) COCl_{2}
(D) DDT

Ans. (D)
Sol. DDT
16. Which of the following crystals has the unit cell such that $a=b \neq c$ and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$?
(A) Zinc blende
(B) Graphite
(C) Cinnabar
(D) Potassium dichromate

Ans. (B)
Sol. $a=b \neq c$ and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
It's Hexagpmal \rightarrow Graphite
17. MnO exhibits
(A) Ferrimagnetism
(B) Antiferromagnetism
(C) Ferromagnetism
(D) Paramagnetism

Ans. (B)
Sol. MnO exhibits antiferromagnetism
18. The number of atoms in 4.5 g of face - centred cubic crystal with edge length 300 pm is: (Given density $=10 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$)
(A) 6.6×10^{20}
(B) 6.6×10^{23}
(C) 6.6×10^{19}
(D) 6.6×10^{22}

Ans. (D)
Sol. $\mathrm{a}=300 \mathrm{pm}$
$a^{3}=27 \times 10^{-24} \mathrm{~cm}^{3}$
$\rho=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
$10=\frac{4 \times \mathrm{M}}{6.022 \times 10^{23} \times 27 \times 10^{-24}}$
$\mathrm{M}=40.65 \mathrm{~g} \mathrm{~mol}^{-1}$
No. of atoms $=$ no. of moles $\times 6.023 \times 10^{23}$

$$
\begin{aligned}
& =\frac{4.5}{40.65} \times 6.023 \times 10^{23} \\
& =6.6 \times 10^{22}
\end{aligned}
$$

19. Vapour pressure of a solution containing 18 g of glucose and 178.2 g of water at $100^{\circ} \mathrm{C}$ is: (Vapour pressure of pure water at $100^{\circ} \mathrm{C}=760$ torr)
(A) 76.0 torr
(B) 752.4 torr
(C) 7.6 torr
(D) 3207.6 torr

Ans. (B)
Sol. $\frac{P^{0}-P_{S}}{P^{0}}=\frac{W_{\text {(solute) }}}{M_{\text {(solute) }}} \times \frac{M_{\text {(solvent) }}}{W_{\text {(solven) }}}$
$\frac{760-P_{s}}{760}=\frac{18}{180} \times \frac{18}{178.2}$
$P_{s}=752.4$ torr
20. A mixture of phenol and aniline shows negative deviation from Raoult's law. This is due to the formation of
(A) Polar covalent bond
(B) Non - polar covalent bond
(C) Intermolecular Hydrogen bond
(D) Intramolecular Hydrogen bond

Ans. (C)
Sol. Phenol + Aniline \rightarrow Intermolecular Hydrogen bond.
21. Which one of the following pairs will show positive deviation from Raoult's law?
(A) Water - HCl
(B) Benzene - Methanol
(C) Water $-\mathrm{HNO}_{3}$
(D) Acetone - Chloroform

Ans. (B)
Sol. Benzene - Non polar
Methanol - polar
The mixture will give +ve deviation
22. How many Coulombs are required to oxidize 0.1 mole of $\mathrm{H}_{2} \mathrm{O}$ to oxygen?
(A) $1.93 \times 10^{5} \mathrm{C}$
(B) $1.93 \times 10^{4} \mathrm{C}$
(C) $3.86 \times 10^{4} \mathrm{C}$
(D) $9.65 \times 10+3^{C}$

Ans. (B)
Sol. $2 \mathrm{H}_{2} \mathrm{O}^{(-2)} \rightarrow \mathrm{O}_{2}^{(0)}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
1 mole $\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{~F}$
$0.1 \mathrm{~mole}_{2} \rightarrow 0.2 \mathrm{~F}$
$=0.2 \times 96500 \mathrm{C}=1.93 \times 10^{4} \mathrm{C}$
23. A current of 3 A is passed through a molten calcium salt for 1 hr 47 min 13 sec . The mass of calcium deposited is : (Molar mass of $\mathrm{Ca}=40 \mathrm{~g}$ mol^{-1})
(A) 6.0 g
(B) 2.0 g
(C) 8.0 g
(D) 4.0 g

Ans. (D)
Sol. $W=\frac{E}{F} \times i \times t=\frac{20}{96500} \times 3 \times 6433=4.0 \mathrm{~g}$
24. The value of ' A ' in the equation $\lambda_{m}=\lambda_{m}^{0}-A \sqrt{C}$ is same for the pair:
(A) NaCl and CaCl_{2}
(B) CaCl_{2} and MgSO_{4}
(C) NaCl and KBr
(D) MgCl_{2} and NaCl

Ans. (C)
Sol. 'A' indicates the empirical constant in DebyeHuckel Onsagar equation
NaCl and KBr are having same empirical constant.
25. For the reaction, $\mathrm{A} \rightleftharpoons \mathrm{B}, \mathrm{E}_{\mathrm{a}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{H}$ $=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When a catalyst is added, E_{a} decreases by $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the E_{a} for the backward reaction in the presence of catalyst?
(A) $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (A)
Sol. $A \stackrel{E_{a}=50}{\rightleftharpoons} B, \Delta H_{r}=-20$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{r}} & =E \mathrm{Ea}_{(\mathrm{f})}-\mathrm{Ea}_{(\mathrm{b})} ; E \mathrm{Ea}_{(\mathrm{b})}=E \mathrm{Ea}_{(\mathrm{f})}-\Delta \mathrm{Hr} \\
& =[50-10]-(-20)=60 \mathrm{KJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

26. For the reaction $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, rate and rate constant are $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$ and $3.4 \times 10^{-5} \mathrm{~S}^{-1}$ respectively at a given instant .the molar concentration of PCl_{5} at that instant is :
(A) $8.0 \mathrm{molL}^{-1}$
(B) $3.0 \mathrm{molL}^{-1}$
(C) $0.2 \mathrm{molL}^{-1}$
(D) $2.0 \mathrm{molL}^{-1}$

Ans. (B)
Sol. Rate $=K[A]^{1}$
$1.02 \times 10^{-4}=3.4 \times 10^{-5}[\mathrm{~A}]^{1}$
$[\mathrm{A}]=\frac{10.2 \times \mathrm{x10}^{-5}}{3.4 \times 10^{-5}}=3 \mathrm{~mol}^{-1}$
27. Which one of the following does not represent Arrhenius equation?
(A) $\log k=\log A-\frac{E a}{2.3030 R T}$
(B) $\mathrm{k}=\mathrm{Ae} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
(C) Ink $=-\frac{E a}{R T}+\operatorname{In} A$
(D) $\mathrm{k}=\mathrm{A} \mathrm{e}^{\mathrm{Ea} / \mathrm{RT}}$

Ans. (D)
Sol. A, B, C \rightarrow correct
28. Identify the incorrect statement :
(A) Values of colligative properties of colloidal solution are of small order compared to values of true solution.
(B) Tyndall effect is observed only when diameter of the dispersed particles is not much smaller than wavelength of incident light.
(C) Colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles.
(D) Brownian movement is due to balanced bombardment of molecules of dispersion medium on colloidal particles.
Ans. (D)
Sol. Brownian movement has been explained due to the unbalanced bombardment of the particles by the molecule of the dispersion medium.
29. For the coagulation of positively charged hydrated ferric-oxide sol, the flocculating power of the ions is in the oder:
(A)
$\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(B) $\mathrm{Cl}^{-}>\mathrm{SO}_{4}^{2-}>\mathrm{PO}_{4}^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(C) $\mathrm{SO}_{4}^{2-}=\mathrm{Cl}^{-}=\mathrm{PO}_{4}^{3-}=\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(D) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}$

Ans. (D)
Sol. For +ve charged solution \rightarrow coagulated with more -ve charged ions
30. Gold sol is not a :
(A) Macromolecular colloid
(B) Lyophobic colloid
(C) Multimolecular colloid
(D) Negatively charged colloid

Ans. (A)
Sol. Gold \rightarrow Multimolecular

$$
\rightarrow \text { Lyophobic colloids }
$$

$$
\rightarrow \text {-ve charged colloids }
$$

31. The incorrect statement about Hall-Heroult process is :
(A) Carbon anode is oxidised to CO and CO_{2}
(B) $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ helps to decrease the melting point of the electrolyte.
(C) CaF_{2} helps to increase the conductivity of the electrolyte.
(D) Oxidation state of oxygen changes in the overall cell reaction.
Ans. (D)
Sol. At Anode
$\mathrm{C}_{(\mathrm{s})}+\underset{(\text { melt })}{\mathrm{O}^{-2}} \rightarrow \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{e}^{-}$
$\mathrm{C}_{(\mathrm{s})}+\underset{\text { (melt) }}{2 \mathrm{O}^{-2}} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{e}^{-}$
32. Select the correct statement
(A) Roasting involves heating the ore in the absence of air
(B) Calcination involves heating the ore above its melting point
(C) Smelting involves heating the ore with suitable reducing agent and flux below its melting point
(D) Calcination of calcium carbonate is endothermic
Ans. (D)
Sol. Calcination of calcium carbonate is endothermic
33. NO_{2} gas is :
(A) Colourless, neutral
(B) Colourless, acidic
(C) Brown, acidic
(D) Brown, neutral

Ans. (C)
Sol. Browm gas, acidic
34. Identify the incorrect statement from the following:
(A) Oxides of nitrogen in the atmosphere can cause depletion of the ozone layer
(B) Ozone absorbs the intense ultraviolet radiation of Sun
(C) Depletion of ozone layer is because of its chemical reactions with chlorofluoro alkanes
(D) Ozone absorbs infrared radiation

Ans. (D)
Sol. IR radiations are electro magnetic radiations. Does not absorbed by O_{3} even passing through vacuum.
35. The correct decreasing order of boiling point of hydrogen halides us
(A) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(B) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(C) $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
(D) $\mathrm{HI}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HCl}$

Ans. (C)
Sol. $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
\downarrow
Inter molecular H -bonding.
36. The synthetically produced radioactive noble gas by the collision of ${ }_{98}^{248} \mathrm{Cf}$ with ${ }_{20}^{48} \mathrm{Ca}$ is
(A) Radon
(B) Radium
(C) Oganesson
(D) Xenon

Ans. (C)
Sol. ${ }_{98}^{249} \mathrm{Cf}+{ }_{20}^{48} \mathrm{Ca} \rightarrow{ }_{118}^{294} \mathrm{Og}+3{ }_{0} \mathrm{n}^{1}$
37. The transition element ($\approx 5 \%$) present with lanthanoid metal in Misch metal is
(A) Mg
(B) Fe
(C) Zn
(D) Co

Ans. (B)
Sol. Lanthanoids (95\%)
Fe (5\%)
Trace of S, C, Ca, Cl
38. Match the following

I.	Zn^{2+}	i.	d^{8} configuration
II.	Cu^{2+}	ii.	Colourless
III.	Ni^{2+}	iii.	$\mu=1.73 \mathrm{BM}$

(A) I-i, II-ii, III - iii
(B) I-ii, II-iii, III - i
(C) I-ii, II-i, III - iii
(D) I-i, II-iii, III - ii

Ans. (B)
Sol. $\mathrm{Zn}^{+2} \rightarrow \mathrm{~d}^{10}$ Colourless no. unpaired electron
$\mathrm{Cu}^{+2} \rightarrow \mathrm{~d}^{9} \rightarrow$ one unpaired $\mathrm{n}=1$
$\mu=\sqrt{n(n+2)} B M=\sqrt{1+(1+2)} B M$
$\mathrm{Ni}^{+2} \rightarrow \mathrm{~d}^{8}$
39. Which of the following statements related to lanthanoids is incorrect?
(A) Lanthanoids are silvery white soft metals
(B) Samarium shows +2 oxidation state
(C) Ce^{+4} solution are widely used as oxidizing agents in titrimetric analysis
(D) Colour of Lanthanoid ion in solution is due to d-d transition
Ans. (D)
Sol. Due to f-f transition.
40. On treating 100 mL of 0.1 M aqueous solution of the complex $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ with excess of AgNO_{3}, 2.86 g of AgCl was obtained. The complex is
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}\right]$

Ans. (C)
Sol. No. of moles of $\mathrm{AgCl}==\frac{\mathrm{wt}}{\mathrm{M} \omega \mathrm{t}}=\frac{2.86}{143.5}=0.02$
2 Primary valency (CI) is present outside of sphere.
41. The complex compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ are
(A) Coordination isomers
(B) Geometrical isomers
(C) Optical isomers
(D) Ionisation isomers

Ans. (D)
Sol. Having same molecular formula but give different ions in solution is called ionization isomerism.
42. Which of the following statements are true about $\left[\mathrm{CoF}_{6}\right]^{3-}$ ion?
I. The complex has octahedral geometry
II. Coordination number of Co is 3 and oxidation state is +6
III. The complex is $s p^{3} d^{2}$ hybridises
IV. It is a high spin complex
(A) I, II and IV
(B) I, III and IV
(C) II and IV
(D) II, III and IV

Ans. (B)
Sol. $\mathrm{Co}^{+3}=\frac{3 d^{6}}{(\mathrm{n}-1) \mathrm{d}} \frac{4 \mathrm{~s}^{0}}{\mathrm{~ns}} \frac{4 \mathrm{p}^{0}}{\mathrm{np}} \frac{4 \mathrm{~d}^{0}}{\mathrm{nd}}$

$\mathrm{F} \rightarrow$ Weak liquid \rightarrow high spin complex
Hyb. $\rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$
Geometry \rightarrow Octahedrol
43. A haloalkane undergoes $\mathrm{S}_{\mathrm{N}}{ }^{2}$ or $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction depending on
(A) Solvent used in the reaction
(B) Low temperature
(C) The type of halogen atom
(D) Stability of the haloalkane

Ans. (A)
Sol. SN $^{2} \rightarrow$ Polar aprotic solvent
Ex: $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
DMSO
DMF
$\mathrm{SN}^{1} \rightarrow$ Polar protic solvent
Ex: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$,
44. 2-Methyl propane can be prepared by wurtz reaction. The haloalkanes taken along with metallic sodium and dry ether are
(A) Chloromethane and 2-chloropropane
(B) Chloroethane and chloromethane
(C) Chloroethane and 1- chloropropane
(D) Chloromethane and 1- chloropropane

Ans. (A)

45. In the following scheme of reaction,

X, Y and Z respectively are :
(A) AgF , alcoholic KOH and benzene
(B) HF , aqueous KOH and Na in dry ether
(C) $\mathrm{Hg}_{2} \mathrm{~F}_{2}$, alcoholic KOH and Na in dry ether
(D) CoF_{2}, aqueous KOH and benzene

Ans. (C)
Sol. $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Hg}_{2} \mathrm{~F}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\underset{(\mathrm{Y})}{\mathrm{KOH}}$ (alcoholic) $\rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}$
$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\underset{(Z)}{2 \mathrm{Na}} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+2 \mathrm{NaCl}$
46. 8.8 g monohydric alcohol added to ethyl magnesium iodide in ether liberates $2240 \mathrm{~cm}^{3}$ of ethane at STP. This monohydric alcohol when oxidized using pyridinium - chlorochromate, forms acarbony compound that answers siver mirror test (Tollens' test). The monohydric alcohol is :
(A) butan - 2-ol
(B) 2,2-dimethyl propan-1- ol
(C) pentan -2 -ol
(D) 2,2-dimethyl ethan -1-ol

Ans. (B)

Sol.

gives Tollen's test
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}(\mathrm{mol} . \mathrm{Wt}=88)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
(1 mole) $+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OMgI}$
$2240 \mathrm{~cm}^{3} \rightarrow 8.8 \mathrm{~g}$
$22400 \mathrm{~cm}^{3} \rightarrow$?
$=88 \mathrm{~g}$
47. When a tertiary alcohol ' A ' $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ reacts with $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at 358 K , it gives a compound ' B ' $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ as a major product. The IUPAC name of the compound ' B ' is :
(A) But - 1-ene
(B) But - 2 ene
(C) Cyclobutane
(D) 2 - Methylpropene

Ans. (D)

Sol.

2 - methyl propene (B)
48. PCC is:
(A) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ Pyridine
(B) $\mathrm{CrO}_{3}+\mathrm{CHCl}_{3}$
(C) $\mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) A complex of chromium trioxide with pyridine +HCl
Ans. (D)
Sol. A complex of chromium trioxide with pyridine + HCl
49. Propanone and Propanal are :
(A) Position
(B) Functional isomers
(C) Chain isomers
(D) Geometrical isomers

Ans. (B)

Sol.

50. Sodium ethanoate on heating with soda lime gives ' X ' Electrolysis of aqueous solution of sodium ethanoate gives ' Y '. ' X ' and ' Y ' respectively are
(A) Methane and Ethane
(B) Methane and Methane
(C) Ethane and Methane
(D) Ethane and Ethane

Ans. (A)
Sol. $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NaOH} \xrightarrow[\Delta]{\mathrm{CaO}} \underset{(\mathrm{X})}{\mathrm{CH}_{4}}+\mathrm{Na}_{2} \mathrm{CO}_{3}$

51. But-1-yne on reaction with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of Hg^{2+} ions at 333 K gives :
(A)

(B)

(C)

(D)

Ans. (A)
Sol.

52. Biologically active adrenaline and ephedrine used to increases blood pressure contain:
(A) Primary amino group
(B) Secondary amino group
(C) Tertiary amino group
(D) Quaternary ammonium salt

Ans. (B)
Sol. Secondary amino group
53. In the reaction

Aniline $\xrightarrow[\text { dil.HCl }]{\mathrm{NaNO}_{2}} P \xrightarrow[\text { NaOH }]{\text { Phenol }} Q$,
' Q ' is
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$
(B) ortho-hydroxyazobenzene
(C) para- hydroxyazobenzene
(D) meta- hydroxyazobenzene

Ans. (C)
Sol. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[\mathrm{HCl}]{\mathrm{NaN}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow[\mathrm{NaOH}]{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}}$

54. The female sex hormone which is responsible for the development of secondary female characteristics and participates in the control of menstrual cycle is :
(A) Testosterone
(B) Estradiol
(C) Insulin
(D) Thyroxine

Ans. (B)
Sol. Estradiol
55. The type of linkage present between nucleotides is
(A) Phosphoester linkage
(B) Phosphodiester linkage
(C) Amide linkage
(D) Glycosidic linkage

Ans. (B)
Sol. The type of linkage present between nucleotides is Phosphodiester linkage
56. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)-$ glucose are
(A) Enantiomers
(B) Conformers
(C) Epimers
(D) Anomers

Ans. (D)
Sol. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)-$ glucose are Anomers
57. Which of the following set of polymers are used as fibre?
(i) Teflon
(ii) Starch
(iii) Terylene
(iv) Orlon
(A) (i) and (ii)
(B) (ii) and (iii)
(C) (iii) and (iv)
(D) (i) and (iv)

Ans. (C)
Sol. Terylene and Orlon are used as fibre.
58. The biodegradable polymer obtained by polymerization of Glycine and Aminocaproic acid is
(A) Nylon-6
(B) PHBV
(C) Nylon - 2 - Nylon 6
(D) Nylon - 6, 10

Ans. (C)
Sol. Nylon 2 - Nylon 6 is biodegradable polymer.
59.

(A) Sucralose
(B) Aspartame
(C) Saccharin
(D) Alitame

Ans. Given structure is wrong in the question.
Sol. One of the "CO" is replaced by SO_{2} then Option (C) Saccharin is correct.
60. Which one of the following is a cationic detergent?
(A) Cetyltrimethylammonium bromide
(B) Sodium dodecylbenzene sulphonate
(C) Dodecylbenzene sulphonic acid
(D) Dodecylbenzene

Ans. (A)
Sol. Cationic detergent Cetyltrimethylammonium bromide

