EXCEL ACADAMICS

CELEBRATING

SUCCESSFUL
YEARS

Hardwork & Dedication

Bengaluru

EXCEL ACADAMICS

IIT-Main & Advanced | NEET | BITS | AIIMS | JIPMER | CET | COMED-K

#326, 3rd 'A' Cross, Opp. - People Tree Hospital, Sheshadripuram College Road, Yelahanka New Town, Bangalore-560064, KARNATAKA

K-CET EXAMINATION - 2024

CHEMISTRY – A-1 with Key & Solutions

- 1. For which one of the following mixtures is composition uniform throughout?
 - (A) Sand and water
 - (B) Grains and pulse with stone
 - (C) Mixture of oil and water
 - (D) Dilute aqueous solution of sugar

Ans.(D)

- Sol. Sugar (s) + H_2O (l) \longrightarrow Homogeneous sugar solution (aq)
- 2. The energy associated with first orbit of He⁺ is
 - (A) 0 J
 - (B) $-8.72 \times 10^{-18} \text{ J}$
 - (C) $-4.58 \times 10^{-18} \text{ J}$
 - (D) $-0.545 \times 10^{-18} \text{ J}$

Ans.(B)

Sol.
$$E_{(1,H)} = -13.6 \text{ eV}$$

= $-13.6 \times 1.602 \times 10^{-19} \text{J}$
= $-21.787 \times 10^{-19} \text{ J}$

$$\mathsf{E}_{(1,\mathsf{He}^+)} = \mathsf{E}_{(1,\mathsf{H})} \times \frac{\mathsf{Z}^2}{\mathsf{n}^2}$$

=
$$[-21.787 \times 10^{-19}] \times \frac{2^2}{(1)^2}$$

= -87.148×10^{-19}
= -8.72×10^{-18} J

- 3. A metalloid is
 - (A) Bi
 - (B) Sb
 - (C) P
 - (D) Se

Ans. (B)

Sol. Sb is metalloid with metal and non-metal nature.

- 4. A pair of isoelectronic species having bond order of one is
 - (A) N₂, CO
 - (B) N_2 , NO^+
 - (C) O_2^{2-}, F_2
 - (D) CO,NO⁺

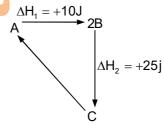
Ans. (C)

Sol. O_2^{-2} , F_2 having 18 electrons with bond order is one.

5. Identify the **wrong** relation for real gases:

(A)
$$Z = \frac{V_{ideal}}{V_{real}}$$

(B)
$$p_{ideal} = p_{real} + \frac{an^2}{V^2}$$


(C)
$$V_{real} = V_{ideal} - nb$$

(D)
$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$

Ans. (A)

Sol.
$$Z = \frac{V_{real}}{V_{ideal}}$$

From the diagram

 $\Delta_r H$ for reaction $C \rightarrow A$ is:

- (A) + 35 J
- (B) -15 J
- (C) -35 J
- (D) + 15 J

Ans. (C)

Sol. According to Hess Law

$$\Delta H_{(A \rightarrow 2B)} + \Delta H_{(2B \rightarrow C)}$$

$$= 10i + 25i = +35i$$

$$=\Delta H_{C\rightarrow A} = -35j$$

- 7. In the analysis of III group basic radicals of salts, the purpose of adding NH₃Cl_(s) to NH₄OH is:
 - (A) to increase the concentration of OH ions
 - (B) to precipitate the radicals of group IV and V
 - (C) to suppress the dissociation of NH₄OH
 - (D) to introduce Cl⁻ ions

Ans. (C)

Sol. $NH_4CI_{(s)}$ with $NH_4OH_{(aq)}$ shows common ion effect decreases the dissociation of $NH_4OH_{(aq)}$

- 8. Solubility product of CaC_2O_4 at a given temperature in pure water is 4×10^{-9} (mol L⁻¹)². Solubility of CaC_2O_4 at the same temperature is
 - (A) $6.3 \times 10^{-5} \text{ mol L}^{-1}$
 - (B) $2 \times 10^{-5} \text{ mol L}^{-1}$
 - (C) $2 \times 10^{-4} \text{ mol L}^{-1}$
 - (D) $6.3 \times 10^{-4} \text{ mol L}^{-1}$

Ans. (A)

Sol. $K_{(sp)} = S^2$ $CaC_2O_4 \rightleftharpoons Ca^{+2} + C_2O_4^{-2}$

[CaC₂O₄] (AB – type)

$$4 \times 10^{-9} = S^2$$

$$S = (4 \times 10^{-9})^{\frac{1}{2}}$$

$$= [40 \times 10^{-10}]^{\frac{1}{2}}$$

 $= 6.3 \times 10^{-5} \text{ mol L}^{-1}$

- 9. In the reaction between moist SO₂ and acidified permanganate solution:
 - (A) SO_2 is oxidised to SO_4^{2-}

MnO₄ is reduced to Mn²⁺

- (B) SO_2 is reduced to S MnO_4^- is oxidised to MnO_4
- (C) SO_2 is oxidised to SO_3^{2-} MnO_4^- reduced to MnO_2
- (D) SO_2 is reduced to H_2S MnO_4^- is oxidised to MnO_4

Ans. (A)

Sol.
$$MnO_4^{-2} + SO_2 \xrightarrow{H^+} Mn^{+2} + SO_4^{-2}$$

- 10. Which one of the following properties is generally not applicable to ionic hydrides?
 - (A) Non volatile
 - (B) Non conducting in solid state
 - (C) Crystalline
 - (D) Volatile

Ans.(D)

- Sol. Ionic hydride has large melting point and not volatile.
- 11. Which one of the following nitrate will decompose to give NO₂ on heating?
 - (A) NaNO₃
- (B) KNO₃
- (C) RbNO₃
- (D) LiNO₃

Ans.(D)

Sol. LiNO₃
$$\xrightarrow{\Lambda}$$
 Li₂ O+NO_{2(g)}

- 12. Which of the following halides **cannot** be hydrolysed?
 - (A) CCI₄
 - (B) SiCl₄
 - (C) GeCl₄
 - (D) SnCl₄

Ans. (A)

Sol. In CCl₄ compound the absence of vacant

- d orbitals in 'C' doesn't hydrolysed.
- 13. 0.48 g of an organic compound on compete combustion produced 0.22 g of CO₂. The percentage of C in the given organic compound is:
 - (A) 25
 - (B) 50
 - (C) 12.5
 - (D) 87.5

Ans. (C)

Sol. Sol. %C =
$$\frac{12}{44} \times \frac{W_{(CO_2)}}{W_{org.comp}} \times 100$$

$$= \frac{12}{44} \times \frac{0.22}{0.48} \times 100$$

14. In the given sequence reactions, identify 'P','Q', 'R' and 'S' respectively.

- (A) Br₂, Alc. KOH, NaOH, Al₂O₃
- (B) HBr, Alc. KOH, CaC₂, KMnO₄
- (C) HBr, Alc. KOH, NaNH₂, Red hot iron tube
- (D) Br₂, Alc. KOH, NaNH₂, Red hot iron tube

Ans. (D)

Sol.
$$H_2C = CH_2 \xrightarrow{Br_2 \atop P} H_2 C - CH_2 \xrightarrow{alc.KOH} Q$$

- The first chlorinated organic insecticide prepared is
 - (A) Gammexane
 - (B) Chloroform
 - (C) COCI₂
 - (D) DDT

Ans. (D)

Sol. DDT

- 16. Which of the following crystals has the unit cell such that $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$?
 - (A) Zinc blende
 - (B) Graphite
 - (C) Cinnabar
 - (D) Potassium dichromate

Ans. (B)

Sol. $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

It's Hexagpmal \rightarrow Graphite

- 17. MnO exhibits
 - (A) Ferrimagnetism
 - (B) Antiferromagnetism
 - (C) Ferromagnetism
 - (D) Paramagnetism

Ans. (B)

Sol. MnO exhibits antiferromagnetism

- 18. The number of atoms in 4.5 g of face centred cubic crystal with edge length 300 pm is: (Given density = 10 g cm^{-3} and $N_A = 6.022 \times 10^{23}$)
 - (A) 6.6×10^{20}
 - (B) 6.6×10^{23}
 - (C) 6.6×10^{19}
 - (D) 6.6×10^{22}

Ans. (D)

Sol. a = 300 pm

$$a^3 = 27 \times 10^{-24} \text{ cm}^3$$

$$\rho = \frac{Z \! \times \! M}{N_{_{A}} \! \times \! a^{^{3}}}$$

$$10 = \frac{4 \times M}{6.022 \times 10^{23} \times 27 \times 10^{-24}}$$

 $M = 40.65 \text{ g mol}^{-1}$

No. of atoms = no. of moles \times 6.023 \times 10²³

$$= \frac{4.5}{40.65} \times 6.023 \times 10^{23}$$
$$= 6.6 \times 10^{22}$$

- Vapour pressure of a solution containing 18 g of glucose and 178.2 g of water at 100°C is: (Vapour pressure of pure water at 100°C = 760 torr)
 - (A) 76.0 torr
 - (B) 752.4 torr
 - (C) 7.6 torr
 - (D) 3207.6 torr

Ans. (B)

$$Sol. \ \, \frac{P^0 - P_S}{P^0} = \frac{W_{(solute)}}{M_{(solute)}} \times \frac{M_{(solvent)}}{W_{(solven)}} \label{eq:solution}$$

$$\frac{760 - P_s}{760} = \frac{18}{180} \times \frac{18}{178.2}$$

$$P_s = 752.4 \text{ torr}$$

- 20. A mixture of phenol and aniline shows negative deviation from Raoult's law. This is due to the formation of
 - (A) Polar covalent bond
 - (B) Non polar covalent bond
 - (C) Intermolecular Hydrogen bond
 - (D) Intramolecular Hydrogen bond

Ans. (C)

- Sol. Phenol + Aniline → Intermolecular Hydrogen bond.
- 21. Which one of the following pairs will show positive deviation from Raoult's law?
 - (A) Water HCI
 - (B) Benzene Methanol
 - (C) Water HNO₃
 - (D) Acetone Chloroform

Ans. (B)

Sol. Benzene – Non polar

Methanol - polar

The mixture will give +ve deviation

- 22. How many Coulombs are required to oxidize 0.1 mole of H₂O to oxygen?
 - (A) 1.93×10^5 C
 - (B) 1.93×10^4 C
 - (C) 3.86×10^4 C
 - (D) $9.65 \times 10+3^{\circ}$

Ans. (B)

Sol. $2H_2O^{(-2)} \rightarrow O_2^{(0)}(g) + 2H_2(g)$

1 mole $H_2O \rightarrow 2 F$

0.1 mole $H_2 \rightarrow 0.2 F$

$$= 0.2 \times 96500 \text{ C} = 1.93 \times 10^4 \text{ C}$$

- 23. A current of 3A is passed through a molten calcium salt for 1hr 47 min 13 sec. The mass of calcium deposited is : (Molar mass of Ca = $40g \text{ mol}^{-1}$)
 - (A) 6.0 g
- (B) 2.0 g
- (C) 8.0 g
- (D) 4.0 g

Ans. (D)

Sol.
$$W = \frac{E}{F} \times i \times t = \frac{20}{96500} \times 3 \times 6433 = 4.0 \text{ g}$$

- 24. The value of 'A' in the equation $\lambda_m = \lambda_m^0 A\sqrt{C}$ is same for the pair:
 - (A) NaCl and CaCl₂
 - (B) CaCl₂ and MgSO₄
 - (C) NaCl and KBr
 - (D) MgCl₂ and NaCl

Ans. (C)

Sol. A' indicates the empirical constant in Debye-Huckel Onsagar equation

NaCl and KBr are having same empirical constant

- 25. For the reaction, $A \rightleftharpoons B$, $E_a = 50 \text{ kJ mol}^{-1}$ and ΔH = -20 kJ mol^{-1} . When a catalyst is added, E_a decreases by 10 kJ mol⁻¹. What is the E_a for the backward reaction in the presence of catalyst?
 - (A) 60 kJ mol^{-1}
 - (B) 40 kJ mol⁻¹
 - (C) 70 kJ mol⁻¹
 - (D) 20 kJ mol⁻¹

Ans. (A)

Sol.
$$A \xrightarrow{E_a=50} B_1 \Delta H_r = -20$$

$$\Delta H_r = Ea_{(f)} - Ea_{(b)}; Ea_{(b)} = Ea_{(f)} - \Delta Hr$$

= $[50 - 10] - (-20) = 60 \text{ KJ mol}^{-1}$

- 26. For the reaction $PCl_5 \rightarrow PCl_3 + Cl_2$, rate and rate constant are $1.02 \times 10^{-4} \, \text{mol L}^{-1} \, \text{S}^{-1}$ and $3.4 \times 10^{-5} \, \text{S}^{-1}$ respectively at a given instant .the molar concentration of PCl_5 at that instant is :
 - (A) $8.0 \,\mathrm{mol}\,\mathrm{L}^{-1}$
- (B) $3.0 \,\mathrm{mol}\,\mathrm{L}^{-1}$
- (C) 0.2molL $^{-1}$
- (D) $2.0 \,\mathrm{mol}\,\mathrm{L}^{-1}$

Ans. (B)

Sol. Rate = $K[A]^1$

$$1.02 \times 10^{-4} = 3.4 \times 10^{-5} [A]^{1}$$

$$[A] = \frac{10.2 \times x10^{-5}}{3.4 \times 10^{-5}} = 3 \text{mol}^{-1}$$

27. Which one of the following does *not* represent Arrhenius equation?

(A)
$$\log k = \log A - \frac{Ea}{2.3030RT}$$

(B)
$$k = Ae^{-Ea/RT}$$

(C)
$$\ln k = -\frac{Ea}{RT} + \ln A$$

(D)
$$k = Ae^{Ea/RT}$$

Ans. (D)

Sol. A, B, C → correct

- 28. Identify the incorrect statement:
 - (A) Values of colligative properties of colloidal solution are of small order compared to values of true solution.
 - (B) Tyndall effect is observed only when diameter of the dispersed particles is not much smaller than wavelength of incident light.
 - (C) Colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles.
 - (D) Brownian movement is due to balanced bombardment of molecules of dispersion medium on colloidal particles.

Ans. (D)

- Sol. Brownian movement has been explained due to the unbalanced bombardment of the particles by the molecule of the dispersion medium.
- 29. For the coagulation of positively charged hydrated ferric—oxide sol, the flocculating power of the ions is in the oder:

(A)
$$PO_4^{3-} > SO_4^{2-} > CI^- > [Fe(CN)_6]^{4-}$$

(B)
$$Cl^- > SO_4^{2-} > PO_4^{3-} > [Fe(CN)_6]^{4-}$$

(C)
$$SO_4^{2-} = CI^- = PO_4^{3-} = [Fe(CN)_6]^{4-}$$

(D)
$$[Fe(CN)_6]^{4-} > PO_4^{3-} > SO_4^{2-} > CI^{-}$$

Ans. (D)

- Sol. For +ve charged solution \rightarrow coagulated with more -ve charged ions
- 30. Gold sol is not a:
 - (A) Macromolecular colloid
 - (B) Lyophobic colloid
 - (C) Multimolecular colloid
 - (D) Negatively charged colloid

Ans. (A)

Sol. Gold \rightarrow Multimolecular

- → Lyophobic colloids
- → -ve charged colloids

- 31. The **incorrect** statement about Hall–Heroult process is :
 - (A) Carbon anode is oxidised to CO and CO₂
 - (B) Na₃AlF₆ helps to decrease the melting point of the electrolyte.
 - (C) CaF₂ helps to increase the conductivity of the electrolyte.
 - (D) Oxidation state of oxygen changes in the overall cell reaction.

Ans. (D)

Sol. At Anode

$$C_{(s)} + \overset{O^{-2}}{\underset{(melt)}{O}} \rightarrow CO_{(g)} + 2e^{-}$$

$$C_{(s)} + 20^{-2} \rightarrow CO_{2(g)} + 4e^{-}$$

- 32. Select the correct statement
 - (A) Roasting involves heating the ore in the absence of air
 - (B) Calcination involves heating the ore above its melting point
 - (C) Smelting involves heating the ore with suitable reducing agent and flux below its melting point
 - (D) Ca<mark>lcination</mark> of calcium carbonate is endothermic

Ans. (D)

- Sol. Calcination of calcium carbonate is endothermic
- 33. NO₂ gas is:
 - (A) Colourless, neutral
 - (B) Colourless, acidic
 - (C) Brown, acidic
 - (D) Brown, neutral

Ans. (C)

Sol. Browm gas, acidic

- 34. Identify the incorrect statement from the following:
 - (A) Oxides of nitrogen in the atmosphere can cause depletion of the ozone layer
 - (B) Ozone absorbs the intense ultraviolet radiation of Sun
 - (C) Depletion of ozone layer is because of its chemical reactions with chlorofluoro alkanes
 - (D) Ozone absorbs infrared radiation

Ans. (D)

- Sol. IR radiations are electro magnetic radiations. Does not absorbed by O_3 even passing through vacuum.
- 35. The correct decreasing order of boiling point of hydrogen halides us
 - (A) HF > HCl > HBr > HI
 - (B) HI > HBr > HCl > HF
 - (C) HF > HI > HBr > HCl
 - (D) HI > HF > HBr > HCI

Ans. (C)

Sol. HF > HI > HBr > HCl

1

Inter molecular H-bonding.

- 36. The synthetically produced radioactive noble gas by the collision of ${}^{248}_{98}$ Cf with ${}^{48}_{20}$ Ca is
 - (A) Radon
- (B) Radium
- (C) Oganesson
- (D) Xenon

Ans. (C)

Sol.
$$^{249}_{98}$$
Cf + $^{48}_{20}$ Ca $\rightarrow ^{294}_{118}$ Og + 3 $_{0}$ N¹

- 37. The transition element ($\approx 5\%$) present with lanthanoid metal in Misch metal is
 - (A) Mg
- (B) Fe
- (C) Zn
- (D) Co

Ans.(B)

Sol. Lanthanoids (95%)

Fe (5%)

Trace of S, C, Ca, Cl

38. Match the following

I.	Zn ²⁺	i.	d ⁸ configuration
Π.	Cu ²⁺	ii.	Colourless
III.	Ni ²⁺	iii.	μ= 1.73 BM

- (A) I-i, II-ii, III iii
- (B) I-ii, II-iii, III i
- (C) I-ii, II-i, III iii
- (D) I-i, II-iii, III ii

Ans. (B)

Sol. $Zn^{+2} \rightarrow d^{10}$ Colourless no. unpaired electron

$$Cu^{+2} \rightarrow d^9 \rightarrow$$
 one unpaired n = 1

$$\mu = \sqrt{n(n+2)}BM = \sqrt{1+(1+2)}BM$$

$$Ni^{+2} \rightarrow d^8$$

- 39. Which of the following statements related to lanthanoids is incorrect?
 - (A) Lanthanoids are silvery white soft metals
 - (B) Samarium shows +2 oxidation state
 - (C) Ce⁺⁴ solution are widely used as oxidizing agents in titrimetric analysis
 - (D) Colour of Lanthanoid ion in solution is due to d–d transition

Ans. (D)

Sol. Due to f-f transition.

- 40. On treating 100 mL of 0.1 M aqueous solution of the complex CrCl₃. 6 H₂O with excess of AgNO₃, 2.86 g of AgCl was obtained. The complex is
 - (A) $\left[Cr(H_2O)_3 Cl_3 \right] .3H_2O$
 - (B) $\left[Cr \left(H_2 O \right)_4 Cl_2 \right] Cl.2H_2 O$
 - (C) $\left[Cr \left(H_2O \right)_5 CI \right] CI_2.H_2O$
 - (D) $\left[Cr(H_2O)_6 Cl_3 \right]$

Ans. (C)

- Sol. No. of moles of AgCl = $=\frac{wt}{M\omega t} = \frac{2.86}{143.5} = 0.02$
 - 2 Primary valency (CI) is present outside of sphere.

41. The complex compounds $\left[\operatorname{Co}\left(\operatorname{NH_3}\right)_{\operatorname{5}}\operatorname{SO_4}\right]\!\operatorname{Br}$ and

$$\left[\text{Co}(\text{NH}_3)_5 \text{Br} \right] \text{SO}_4$$
 are

- (A) Coordination isomers
- (B) Geometrical isomers
- (C) Optical isomers
- (D) Ionisation isomers

Ans. (D)

- Sol. Having same molecular formula but give different ions in solution is called ionization isomerism.
- 42. Which of the following statements are true about [CoF₆]³⁻ ion?
 - I. The complex has octahedral geometry
 - II. Coordination number of Co is 3 and oxidation state is +6
 - III. The complex is sp³d² hybridises
 - IV. It is a high spin complex
 - (A) I, II and IV
 - (B) I, III and IV
 - (C) II and IV
 - (D) II, III and IV

Ans. (B)

Sol.
$$Co^{+3} = \frac{3d^6}{(n-1)d} \frac{4s^0}{ns} \frac{4p^0}{np} \frac{4d^0}{nd}$$

 $\mathsf{F} o \mathsf{W}$ eak liquid o high spin complex

Hyb. $\rightarrow sp^3d^2$

Geometry → Octahedrol

- 43. A haloalkane undergoes S_N^2 or S_N^1 reaction depending on
 - (A) Solvent used in the reaction
 - (B) Low temperature
 - (C) The type of halogen atom
 - (D) Stability of the haloalkane

Ans. (A)

Sol. $SN^2 \rightarrow Polar$ aprotic solvent

0

Ex: $CH_3 - \overset{\parallel}{C} - CH_3$, NaOH, KOH, $C_2H_5O^-$

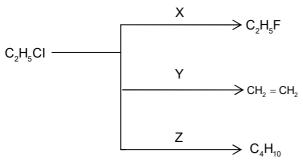
DMSO

DMF

SN¹ → Polar protic solvent

Ex: H_2O , NH_3 , C_2H_5OH ,

- 44. 2–Methyl propane can be prepared by wurtz reaction. The haloalkanes taken along with metallic sodium and dry ether are
 - (A) Chloromethane and 2-chloropropane
 - (B) Chloroethane and chloromethane
 - (C) Chloroethane and 1- chloropropane
 - (D) Chloromethane and 1– chloropropane


Ans. (A)

$$CH_{3}CI + CH_{3}$$
Sol.
$$CH_{3} CH CI + 2Na \xrightarrow{Dry Ether} CH_{3} - CH - CH_{3}$$

$$CH_{3}$$

(Cross Wurtz reaction)

45. In the following scheme of reaction,

- X, Y and Z respectively are:
- (A) AgF, alcoholic KOH and benzene
- (B) HF, aqueous KOH and Na in dry ether
- (C) Hg₂F₂, alcoholic KOH and Na in dry ether
- (D) CoF₂, aqueous KOH and benzene

Ans. (C)

Sol.
$$2C_2H_5CI + Hg_2F_2 \rightarrow 2C_2H_5F + Hg_2CI_2$$

 (X)

$$C_2H_5CI + + KOH_{(Y)} \text{ (alcoholic)} \rightarrow CH_2 = CH_2$$

$$2C_2H_5CI + 2Na \rightarrow C_4H_{10} + 2NaCI$$

- 46. 8.8 g monohydric alcohol added to ethyl magnesium iodide in ether liberates 2240 cm³ of ethane at STP. This monohydric alcohol when oxidized using pyridinium chlorochromate, forms acarbony compound that answers siver mirror test (Tollens' test). The monohydric alcohol is:
 - (A) butan 2-ol
 - (B) 2,2 -dimethyl propan -1- ol
 - (C) pentan -2 -ol
 - (D) 2,2 –dimethyl ethan -1-ol

Ans.(B)

Sol.
$$CH_3 \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{P.C.C} CH_3 \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

gives Tollen's test

 $(CH_3)_3CCH_2OH \text{ (mol. Wt = 88)} + C_2H_5MgI \rightarrow C_2H_6$ (1 mole) + $(CH_3)_3 CCH_2OMgI$ 2240 cm³ \rightarrow 8.8g 22400 cm³ \rightarrow ? = 88 g

- 47. When a tertiary alcohol 'A' $(C_4H_{10}O)$ reacts with 20% H_3PO_4 at 358 K, it gives a compound 'B' (C_4H_8) as a major product. The IUPAC name of the compound 'B' is :
 - (A) But 1 ene
 - (B) But 2 ene
 - (C) Cyclobutane
 - (D) 2 Methylpropene

Ans. (D)

Sol.
$$CH_3 - CH_3 \longrightarrow CH_3 - CH_3 \longrightarrow CH_3 - CH_3 \longrightarrow CH$$

2 – methyl propene (B)

- 48. PCC is:
 - (A) $K_2Cr_2O_7$ + Pyridine
 - (B) CrO₃ + CHCl₃
 - (C) $CrO_3 + H_2SO_4$
 - (D) A complex of chromium trioxide with pyridine + HCI

Ans. (D)

- Sol. A complex of chromium trioxide with pyridine + HCI
- 49. Propanone and Propanal are:
 - (A) Position
- (B) Functional isomers
- (C) Chain isomers
- (D) Geometrical isomers

Ans. (B)

Sol.
$$CH_3 - C - CH_3$$
 and $CH_3 - CH_2 - CHO$

- 50. Sodium ethanoate on heating with soda lime gives 'X' Electrolysis of aqueous solution of sodium ethanoate gives 'Y'. 'X' and 'Y' respectively are:
 - (A) Methane and Ethane
 - B) Methane and Methane
 - (C) Ethane and Methane
 - (D) Ethane and Ethane

Ans. (A)

Sol.
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

$$2CH_3COONa + 2H_2O \rightarrow C_2H_6 + 2CO_2 + 2NaOH + H_2$$

51. But–1-yne on reaction with dil. H₂SO₄ in presence of Hg²⁺ ions at 333 K gives :

Ans. (A)

Sol.
$$CH_3 - CH_2 - C \equiv CH \xrightarrow{\text{dil. } H_2SO_4 \ H_3^{+2}}$$

$$CH_3 - CH_2 - C = CH_2 \xleftarrow{Tautomerism} CH_3 - CH_2 - C - CH_3$$

- 52. Biologically active adrenaline and ephedrine used to increases blood pressure contain:
 - (A) Primary amino group
 - (B) Secondary amino group
 - (C) Tertiary amino group
 - (D) Quaternary ammonium salt

Ans. (B)

Sol. Secondary amino group

53. In the reaction

Aniline
$$\xrightarrow{\text{NaNO}_2}$$
 $P \xrightarrow{\text{Phenol}} Q$,

'Q' is

- (A) $C_6H_5N_2CI$
- (B) ortho-hydroxyazobenzene
- (C) para- hydroxyazobenzene
- (D) meta- hydroxyazobenzene

Ans. (C)

Sol.
$$C_6H_5NH_2 \xrightarrow{NaNO_2 \atop HCl} C_6H_5N_2Cl \xrightarrow{C_6H_5OH \atop NaOH} OH$$

$$P - hydroxy azobenzene$$

- 54. The female sex hormone which is responsible for the development of secondary female characteristics and participates in the control of menstrual cycle is:
 - (A) Testosterone
 - (B) Estradiol
 - (C) Insulin
 - (D) Thyroxine

Ans.(B)

Sol. Estradiol

- 55. The type of linkage present between nucleotides is
 - (A) Phosphoester linkage
 - (B) Phosphodiester linkage
 - (C) Amide linkage
 - (D) Glycosidic linkage

Ans. (B)

- Sol. The type of linkage present between nucleotides is Phosphodiester linkage
- 56. $\alpha D (+) glucose$ and $\beta D (+) glucose$ are
 - (A) Enantiomers
 - (B) Conformers
 - (C) Epimers
 - (D) Anomers

Ans. (D)

Sol. $\alpha - D - (+) - \text{glucose}$ and $\beta - D - (+) - \text{glucose}$ are Anomers

- 57. Which of the following set of polymers are used as fibre?
 - (i) Teflon
 - (ii) Starch
 - (iii) Terylene
 - (iv) Orlon
 - (A) (i) and (ii)
 - (B) (ii) and (iii)
 - (C) (iii) and (iv)
 - (D) (i) and (iv)

Ans. (C)

- Sol. Terylene and Orlon are used as fibre.
- 58. The biodegradable polymer obtained by polymerization of Glycine and Aminocaproic acid is
 - (A) Nylon 6
 - (B) PHBV
 - (C) Nylon 2 Nylon 6
 - (D) Nylon 6, 10

Ans. (C)

Sol. Nylon 2 – Nylon 6 is biodegradable polymer.

- (A) Sucralose
- (B) Aspartame
- (C) Saccharin
- (D) Alitame

Ans. Given structure is wrong in the question.

- Sol. One of the "CO" is replaced by SO₂ then Option (C) Saccharin is correct.
- 60. Which one of the following is a cationic detergent?
 - (A) Cetyltrimethylammonium bromide
 - (B) Sodium dodecylbenzene sulphonate
 - (C) Dodecylbenzene sulphonic acid
 - (D) Dodecylbenzene

Ans. (A)

Sol. Cationic detergent Cetyltrimethylammonium bromide